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Abstract —Much interest has been shown in the literature concerning
the direct modulation of an optical signal by a microwave signal making
use of a microstrip-like structure with a diffused optical waveguide. Due to
the particular geometry of the modulator, the usual rigorous methods of
analysis, such as the spectral-domain method -(SDM), encounter problems
and less efficient methods have had to be used. In this paper it is shown
that by using an asymptotic form of the Green’s function in the standard
SDM, an accurate, efficient, and rigorous full-wave analysis can readily be
undertaken. A closed- form first-order solution to the field patterns is also
derived.

I. INTRODUCTION

N THE LITERATURE significant interest [1]-[6] has
been shown in the direct microwave modulation of an

optical signal making use of a microstrip-like structure

such as that whose geometry is shown in Fig. 1. In order to
optimize the performance of such a modulator it is essen-

tial to know the detailed form of the microwave electric -

field in the optical waveguide. Previous analyses of this
structure have, however, been based either on purely static
techniques such as conformal mapping [1] or the method
of images [3], or, more recently, on the method of lines [5],
which is-in principle capable of being applied to the hybrid
mode of the structure but which is computationally expen-
sive. In [5] it is stated that the spectral-domain method
(SDM), while able to give excellent results for macroscopic
quantities, such as the effective permittivity, gives signifi-
cant errors when used to calculate the field patterns in the
vicinity -of the strips. It is shown in this paper that by
making several modifications to the basic spectral-domain
method, it is possible to produce accurate, rigorous, and
computationally efficient hybrid-mode results for the field
anywhere in the structure. In fact, it is possible to take
advantage of the special nature of the geometry to increase
the efficiency of the computation in a way not possible
with the other methods. The method can readily be applied
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Fig. 1. Geometry of an electro-optic modulator.

to other planar structures including those with ’multilayer
geometries.

II. THE NATURE OF THE PROBLEM

For a standard microstrip, it is possible to accurately
and efficiently calculate the field pattern around the strip
for the dominant and the higher order modes by means of
a spectral-domain method [7]. For the geometry of Fig. 1,

. however, the standard spectral domain method runs into

difficulties for two reasons. First, the strip width is several
orders of magnitude smaller than the box width. This
means that a very large number of Fourier terms must be
retained in order to achieve the required resolution around
the strips. Second, the presence of the very thin buffer
layer means that the Green’s function for the structure
converges to its asymptotic limit very slowly. Again this
means that for accuracy, a very large number of terms
must be taken before the asymptotic form may be used.
Each of the difficulties described above can, however, be
overcome in order to regain this advantage. In addition,
use may be made of the fact that, given the relative sizes of
the strips and the box, the effect of the box on the field in
the vicinity of the strips is very s.mall
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III. THE THEORY

In order to calculate the field pattern in the box, we
must first calculate the effective permittivity of the struc-
ture using the modified spectral-domain method at the
frequency of interest. Following the method used in [7], we
arrive at the usual characteristic equation, the solutions of
which we desire:

det(K) =0 (1)

where

K= L AmG(m i ®

where N is the number of terms used in the spectral
expansion. (_f(n) is the dyadic Green’s function for the
structure, and the unknown current on the strips has been
expanded in a set of basis functions, {J,}.

The Green’s function can be derived using the methods
of [8] and [9], and the basis functions are those used in [7].

In order to facilitate the computation of the summations
over n in the above equation it is useful to have an
asymptotic expression for G(n)as n goes to infinity. These
are given as follows: N

L 2ep BPQ
GF=——+-
Jj&,  Ja,weq
., —BQ
Ge=
we
v _ %2
G = ©)
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where
1
0= I €c3tegytankod,
GL7 02 e, + ey tan kpyd,
a,=nrn/a

k%h:{TIk(%_Bz_ai
kiz?z :€T1(ké—(ﬁz+ai)/€ﬂ)
é=w2peo.

Here ¢, is the transverse component of the permittivity of
the ith layer; €,, is the y component of the permittivity of
the ith layer; e; =epey,; and B is the propagation
constant in the z direction.

Note that for the geometry under consideration the
thickness of the middle layer is much less than the thick-
ness of the other two layers. We therefore approximate
tan(k;d;) and tan(kg;d;) to unity but retain the
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tan(kg,d,) term for the middle layer since this will con-
verge to unity much more slowly.

We can now express the elements of the characteristic
determinant in the following way:

N o JJ B = JJo(n)
Z(Gzz_ ::)Jz‘]z+2wnu‘n§1 a, +'o?0n_1 a,
S (662 ii- LY i
weO n=1
. 1 = .
Y(Gu=G2) S - — ¥ La, (4)
0 n=1

The basis functions used to expand the unknown current
are given by

Jz(axJ,Z) ~ Z er Tv(zxr/wr) (5
o i (Jx» (1-(2x,/w))"* )

where x, is the displacement from the center of the rth
strip; w, is the width of the rth strip; and T,(x) are the
Chebyshev polynomials.

As in [7], the Fourier transforms of these basis functions
are expressed in terms of Bessel functions. By making use
of the properties of the Bessel functions it is possible to
evaluate the second and third terms of these expressions
without the need to carry out the summations explicitly.
Moreover, these terms can be evaluated once for each
different geometry and thereafter need not be reevaluated.
The remaining summations containing the terms

G,-GY

converge very rapidly and, therefore, require only a small
amount of computation for their evaluation. Thus the
characteristic equation for the structure can be evaluated
and the effective permittivity and the current distribution
in the strips calculated for any mode. This has been
achieved without imposing a penalty in computational
effort resulting from the large ratio of box size to strip size.

1V. EVALUATION OF THE FIELD

By making use of transmission line equivalent circuits
[8], the field can be calculated by evaluating sums of the
following form:

sink . (y,—y
-cosan(x+a/2)——_i(—;—),
Sin k gy yy

(6)

The other field components and at different values of y
can be calculated in a similar manner.

()<y<y1.
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Because of the large rate of change of field intensity in
the vicinity of the strips many terms must, however, be
included in the sum in order to achieve sufficient resolu-
tion. For the geometry of Fig. 1, at least 16000 terms must
be included in order to achieve sufficient accuracy. This is
the case whatever basis functions are used. It is this aspect
of the problem which has led to the spectral-domain
method being avoided hitherto. It is possible, however, to
make use of the asymptotic form of the dyadic Green’s
function to avoid the difficulty. First, we define the
asymptotic and the residual components of the field thus:

EF=Re{ Y {G2J +Gx2T )

cexp(a,((y—d)+ j(x+ a/2)))}
E_:es(x9 y):Ex(x’ y)_E,‘?o(xa y) (7)

Similar expressions can be written for E, and for layer 3.
With the specified basis functions, we can write £° as
the weighted sum of terms of the following form:

2. Js(nu)exp(nv) (8)

where
u=aw/2a
v=a(y—d + jx)/a+ ju/2

and s depends on which basis function we are dealing
with.

For the case of a typical electro-optic modulator, to
approximate the factor Q(n) by a constant is no longer
adequate. Instead, we make a more complicated approxi-
mation, which is valid in the case of a thin buffer layer.
This is given as follows: '

K, + K,exp(K;n)

)
where

K1=1/(‘1+ €2)

K, =1/(‘1+ '53)_ K,

Ky=a/mmlog(Q(m)- K;/K,)
m=10.55a/d,m.

The asymptotic Green’s function may still be written in
terms of summations such as (8). Later, we shall require
that the field pattern be normalized and we shall also need
the sum

Jg(nu)exp (nv) ‘

n

(10)
n

As they stand, these summations converge very slowly.

It is possible, however, by making use of the Laplace

transforms of these expressions, to produce much more

rapidly converging summations to within an additive func-
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tion independent of n as follows:

S J (nu)exp(nv) =) !

m ((27rjm + U)2+ u?
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u
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m {2wjm+v-+((2'njm+v)2+ uz) /

(11)
The summations on the right converge much faster than
those on the left. In fact it is often possible to obtain
sufficient accuracy for practical purposes with just a single
term.

The summations on the right-hand sides can be inter-
preted physically in the following way. The term corre-
sponding to m =0 is the only term which remains in the
limit as a goes to infinity, in other words if there were no
sidewalls to the structure. The other terms in the series
correspond to the images produced by reflections at the
sidewalls. When the strip width is very much smaller than
the box width and we are only interested in the field
pattern in the vicinity of the strips, then the field pattern is
dominated by the singularities at the strip edges and the

+v/2.

- effect of the images is negligible in comparison. If we

wished to calculate the field away from the strips then
more terms would need to be taken.

In addition, because the field near the strips is domi-
nated by the singularity at the edges of the strips, the
residual component of the field is very small compared
with the asymptotic componeni. thereof. So, to a good
approximation, the residual component can be neglected.
We have, therefore, an easily computed closed-form ex-
pression for the field amplitude anywhere in the vicinity of
the strips which can be used to predict the behavior of
electro-optic components.

V. NORMALIZATION OF THE FIELD PATTERN

The solution of (4), being a homogeneous equation, will
be arbitrary to within a multiplicative constant. In order to
relate the field intensities to the potentials on the strips it
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is therefore necessary to normalize the solutions to speci-
fied potentials. Because of the symmetry of the geometry
of Fig. 1, the obvious values of the potential to use are 1 V
and 1 V for the even mode and +1 V for the odd mode.
The field pattern for any pair of potentials can then be
calculated by taking a linear combination of the even and
odd modes of the structure. We therefore need to impose
the condition

f—(n'/2+offset)
—a/2

E (x,0)dx=1. (12)

Making use of the expansion of (6), we get

© E_ sina,(a/2—offset)
z

n=1 @,

+ E,o(a/2—offset) =1

(13)

", is the nth term of the summation in (6).

As before, we .can split E_, into its asymptotic and
residual parts and thereby evaluate the left-hand side of
(13) by means of a short series plus closed-form terms
given in (11).

where E

VI. COMPARISON WITH THE METHOD OF LINES

The method of lines has been applied to several planar
. waveguide discontinuity analyses [10]-[12] and recently to
the analysis of the electro-optic modulator, which is the
subject of this contribution [5]. In each case the method is
used to produce an equation of the following general form:

Ex gxx ;xz "x
Ez B gzx gzz Jz ‘ (14)

The vectors E_, etc., are the amplitudes of the quantity in
question at a set of specified values of x along the dielec-
tric interface containing the metallization. The matrix Z is
related to the dyadic Green’s function for the structure in
the following way:

Z,(n,m)=G, (x,x)8(x—x,)8(x'~x,) (15)

where i and j represent x or z, and x, and x, are the
positions of the appropriate lines.

The characteristic equation is then obtained by enforc-
ing the boundary conditions on the strip at a number of
specified test points. This yields an expression of the form

N

Z

=Xz

2 (16)

zx Hzz

—_XX

det

N
I
o

where the size of the determinant is equal to the number of
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Fig. 2. Intensity of E, for the geometry of Fig. 1 with d; =0.2 pm.

test points or “lines” which are taken on the metalliza-
tions.

It can be seen that, formally, the method of lines is
equivalent to the method of moments with the unknown
currents being expanded in a series of impulse functions,
and with the test functions also being a number of impulse
functions. The distinctive feature of the method of lines is
the means by which the Green’s function is derived. The
following observations may be made in comparison:

i) Since the method of lines is inherently a point-
matching technique, the singularities at the edges of
the strips cannot be exactly taken into account. At
best the test points can be concentrated into the
regions near the edges. In [11] the error caused by
the presence of the singularity is compensated ap-
proximately by a judicious choice of the position of
the test points. With the SDM it is possible to
incorporate the edge singularities directly into the
basis functions.

it) The method of lines is likely to encounter prob-
lems, especially if higher order modes are required,
due to spurious modes and relative convergence
phenomena arising from the fact that the currents
and fields arc specified at only a finite number of
points. By making use of basis functions and test
functions which closely resemble the actual current
distributions, the SDM does not suffer from these
undesirable effects.

iii) With the method of lines the field at any point in
the box is only available as a summation in terms
of the currents at the test points. With the SDM it
is possible to extract a closed-form approximation
because of the ability to expand the current func-
tions in a very short series of basis functions.
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The method here described has been used to calculate
the field patterns for the electro-optic modulator shown in
Fig. 1 both with and without the thin buffer layer of silica.
In Figs. 2 and 3 are plotted the calculated results com-
pared with those calculated in [5] by the method of lines.
In order to-directly compare the results, the voltages on the
strips have been set to 0 and 1 V, respectively, and the
calculations were carried out at a frequency of 1 GHz,
where the results would be expected to be very similar to
those from a static formulation. Note that the choice of
applied voltages causes an asymmetry in the field pattern.
It can be seen that the results are very similar, thus
indicating that each method is capable of giving accurate
results. The advantage of the method described in this
paper is in the computational efficiency and in the avail-
ability of a closed-form approximation for the field ampli-
tude.

Using this method it is possible to calculate the results
given in the figures using an Amstrad 1512 with coproces-
sor and computer times as follows: The values of effective
permittivity for a given geometry and frequency were
calculated in 5.5 min for each mode. Thereafter the field
values at any specified point can be calculated in 0.4 s.

THEORETICAL RESULTS

VIII. CONCLUSION

In this paper, it has been shown that with some modifi-
cations, the spectral-domain method can be used to ana-
lyze planar waveguide structures with a very thin buffer
layer such as those being considered for use in electro-optic
modulators. These have previously only been analyzed
using static approximations or by means of the method of
lines. The method described in this contribution is rigorous
and computationally efficient and takes into account the
hybrid nature of the microwave field. In addition it is
capable of producing a closed-form first-order solution to
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the field patterns of interest which is in a useful form for
the solution of the modulator overlap integral. The. results
calculated using the closed-form formula derived using this
method have been shown to be in good agreement with
those calculated using the numerical method of lines.
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