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A Rigorous and Computationally Efficient
Analysis of Microstrip for Use as an

Electro-Optic Modulator

c. J. RAILTON AND JOSEPH

Abstract — Much iuterest has been shown in the literature concerning

the direct modulation of an optical signal by a microwave signal making

use of a microstrip-like structure with a diffused optical wavegnide. Due to

tbe particular geometry of the modulator, the usual rigorous methods of

analysis, such as the spectral-domain method (SDM), encounter problems

and less efficient methods have had to be used. In thk paper it is shown

that by using an asymptotic form of the Green’s function in the staudard

SDM, an accurate, efficient, and rigorous full-wave analysis can readily be

undertaken. A closed-form first-order solution to the field patterns is also

derived.

I. INTRODUCTION

I N THE LITERATURE significant interest [1]-[6] has

been shown in the direct microwave modulation of an

optical signal making use of a microstrip-like structure

such as that whose geometry is shown in Fig. 1. In order to

optimize the performance of such a modulator it is essen-

tial to know the detailed form of the microwave electric

field in the optical waveguide. Previous analyses of this

structure have, however, been based either on purely static

techniques such as conformal mapping [1] or the method

of images [3], or, more recently, on the method of lines [5],

which is in principle capable of being applied to the hybrid

mode of the structure but which is computationally expen-

sive. In [5] it is stated that the spectral-domain method

(SDM), while able to give excellent results for macroscopic

quantities, such as the effective permittivity, gives signifi-

cant errors when used to calculate the field patterns in the

vicinity of the strips. It is shown in this paper that by

making several modifications to the basic spectral-domain

method, it is possible to produce accurate, rigorous, and

computationally efficient hybrid-mode results for the field

anywhere in the structure. In fact, it is possible to take

advantage of the special nature of the geometry to increase

the efficiency of the computation in a way not possible

with the other methods. The method can readily be applied
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Fig. 1. Geometry of an electro-optic modulator.

to other planar structures including those with multilayer

geometries.

II. THE NATURE OF THE PROBLEM

For a standard microstrip, it is possible to accurately

and efficiently calculate the field pattern around the strip

for the dominant and the higher order modes by means of

a spectral-domain method [7]. For the geometry of Fig. 1,

however, the standard spectral-domain method runs into

difficulties for two reasons. First,, the strip width is several

orders of magnitude smaller than the box width. This

means that a very large number of Fourier terms must be

retained in order to achieve the required resolution around

the strips. Second, the presence of the very thin buffer

layer means that the Green’s function for the structure

converges to its asymptotic limit very slowly. Again this

means that for accuracy, a very large number of terms

must be taken before the asymptotic form may be used.

Each of the difficulties described above can, however, be

overcome in order to regain this advantage. In addition,

use may be made of the fact that,, given the relative sizes of

the strips and the box, the effect of the box on the field in

the vicinity of the strips is very small.
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III. THE THEORY

In order to calculate the field pattern in

must first calculate the effective permittivity
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tan ( kE2d2) term for the middle layer since this will con-

the box we verge to unity much more slowly.

We can now express the elements of the characteristicof the strut- . . . . . .

ture using the modified spectral-domain method at the determinant m the following way:

frequency-of interest. Following the method used in [7], we . .

arrive at the usual characteristic equation, the solutions of
~ ~~Q(n)

x( Gzz-G:)ii +2&, :+ :,,2, ~?l
which we desire:

det(K)=O

where

(1)

(2)

The basis functions
where N is the number of terms used in the spectral

expansion. Q(n) is the dyadic Green’s function for the
are given by

structure, an–d the unknown current on the strips has been

expanded in a set of basis functions, { ~}.

[-)

J,(X, z)

The Green’s function can be derived using the methods dJX

of [8] and [9], and the basis functions are those used in [7]. ax
In order to facilitate the computation of the summations

over n in the above equation it is useful to have an where x, is the displacement from the center of

asymptotic expression for &n) as n goes to infinity. These strip; w, is the width of the r th strip; and T,(x) are the

are given as follows: –

where

a,, = n7r/a

(3)

used to expand the unknown

~,(2xr/w)

= ?[21 (1-(2xr/w,))l’2

(4)

current

(5)

the z th

Chebyshev polynomials.

As in [7], the Fourier transforms of these basis functions

are expressed in terms of Bessel functions. By making use

of the properties of the Bessel functions it is possible to

evaluate the second and third terms of these expressions

without the need to carry out the summations explicitly.

Moreover, these terms can be evaluated once for each

different geometry and thereafter need not be reevaluated.

The remaining summations containing the terms

G,, – G,~

converge very rapidly and, therefore, require only a small

amount of computation for their evaluation. Thus the

characteristic equation for the structure can be evaluated

and the effective permittivity and the current distribution

in the strips calculated for any mode. This has been

achieved without imposing a penalty in computational

effort resulting from the large ratio of box size to strip size.

IV. EVALUATION OF THE FIELD

By making use of transmission line equivalent circuits

[S], the field can be calculated by evaluating sums of the

following form:

Ey(x,y) = z{cy..z+~xzi}
Here c~, is the transverse component of the permittivity of

12

the i th layer; c~1 is the y component of the permittivity of

cc, = G; and B is the propagation

sin kE1(yl – y)

the i th layer; .cosa~(x + a/2)
sin k El yl

constant in the z direction.

Note that for the geometry under consideration the ()<y<y,. (6)
thickness of the middle layer is much less than the thick-

ness of the other two layers. We therefore approximate The other field components and at different values of y
tan ( kE1dl) and tan (k E3d3) to unity but retain the can be calculated in a similar manner.
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Because of thelarge rate of change of field intensity in

the vicinity of the strips many terms must, however, be

included in the sum in order to achieve sufficient resolu-

tion. Forthe geometry of Fig. l, at least 16000 terms must

be included in order to achieve sufficient accuracy. This is

the case whatever basis functions are used. It is this aspect

of the problem which has led to the spectral-domain

method being avoided hitherto. It is possible, however, to

make use of the asymptotic form of the dyadic Green’s

function to avoid the difficulty. First, we define the

asymptotic and the residual components of the field thus:

(E;=Re ~{~:~+~’~}

.exp(a.((y – d,)+ j(~ + a/2)))]

(7)E“’(x,y) = Ex(x, y)–~.:(.x, Y)..Y

Similar expressions can be written for Ey and for layer 3.

With the specified basis functions, we can write E; as

the weighted sum of terms of the following form:

~J~(nu)exp(nu) (8)
n

where

u = ww/2a

u=7r(y- dl+jx)/a+jn/2

and s depends on which basis function we are dealing

with.

For the case of a typical electro-optic modulator, to

approximate the factor Q(n) by a constant is no longer

adequate. Instead, we make a more complicated approxi-

mation, which is valid in the case of a thin buffer layer.

This is given as follows:

KI + Kz exp (K3n ) (9)

where

K1=l/(E1+e2)

K2=l/(61+c3)– K1

K3=a/nnzlog(Q(m) -Kl/K2)

m = 0.55a /d2c2~.

The asymptotic Green’s function may still be written in

terms of summations such as (8). Later, we shall require

that the field pattern be normalized and we shall also need

the sum

~~(nu)exp(nu)
En (lo)

n

As they stand, these summations converge very slowly.

It is possible, however, by making use of the Laplace

transforms of these expressions, to produce much more

rapidly converging summations to within an additive func-

tion independent of n as follows:

.,

“( u

2njm + u + ((2njm + u)z+ u2)1’2 1

J,(nu)exp(nu)
En
n

s

1
x-{

u
.

}~ s 2rjm + u +((2rjm + 0)2+ u2)1’2 ‘

S>o

JO(m4)exp(nu)
En
n

{

u
=~ln

m 2m-jm + u +((2Tjm + U)2+ U2)1’2 )

+ v/2. (11)

The summations on the right converge much faster than

those on the left. In fact it is often possible to obtain

sufficient accuracy for practical purposes with just a single

term.

The summations on the right-hand sides can be inter-

preted physically in the following way. The term corre-

sponding to m = O is the only term which remains in the

limit as a goes to infinity, in other words if there were no

sidewalls to the structure. The (other terms in the series

correspond to the images produced by reflections at the

sidewalls. When the strip width is very much smaller than

the box width and we are only interested in the field

pattern in the vicinity of the strips, then the field pattern is

dominated by the singularities at the strip edges and the

effect of the images is negligible in comparison. If we

wished to calculate the field away from the strips then

more terms would need to be taken.

In addition, because the field near the strips is domi-

nated by the singularity at the edges of the strips, the

residual component of the field is very small compared

with the asymptotic component thereof. So, to a good

approximation, the residual component can be neglected.

We have, therefore, an easily computed closed-form ex-

pression for the field amplitude anywhere in the vicinity of

the strips which can be used to predict the behavior of

electro-optic components.

V. NORMALIZATION OF THE FIELD PATTERN

The solution of (4), being a homogeneous equation, will

be arbitrary to within a multiplicative constant. In order to

relate the field intensities to the potentials on the strips it
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is therefore necessary to normalize the solutions to speci-

fied potentials. Because of the symmetry of the geometry

of Fig. 1, the obvious values of the potential to use are 1 V

and 1 V for the even mode and + 1 V for the odd mode.

The field pattern for any pair of potentials can then be

calculated by taking a linear combination of the even and

odd modes of the structure. We therefore need to impose

the condition

f
‘( “2+0ffset)Ex(x,O) dx = 1. (12)

–a/2

Making use of the expansion of (6), we get

,~1 ’11 ‘ina~( ~/2-Offset) + ExO(a/2 -offset) =i
n

(13)

where EY,l is the n th term of the summation in (6).

As before, we can split EXH into its asymptotic and

residual parts and thereby evaluate the left-hand side of

(13) by means of a short series plus closed-form terms

given in (11).

VI. COMPARISON WITH THE .METHOD OF LINES

The method of lines, has been applied to several planar

waveguide discontinuity analyses [10]–[12] and recently to

the analysis of the electro-optic modulator, which is the

subject of this contribution [5]. In each case the method is

used to produce an equation of the following general form:

(14)

The vectors ET, etc., are the amplitudes of the quantity in

question at a set of specified values of x along the dielec~

tric interface containing the metallization. The matrix z is

related to the dyadic Green’s function for the structur= in

the following way:

~,)(n, nl) =g,J(x, x’)8(x– x,1)i3(x’-xm) (15)

where i and j represent x or z, and x,, and x., are the
positions of the appropriate lines.

The characteristic equation is then obtained by enforc-

ing the boundary conditions on the strip at a number of

specified test points. This yields an expression of the form

(16)

where the size of the determinant is equal to the number of

[
Ey = 140kV/m

Th]s method
—---- (5)

I

x. 30 pm
L 1

I
LEy=-140kV/m

Fig. 2. Intensity of E, for the geometry of Fig. 1 with dz = 0.2 pm.

test points or “lines” which are taken on the metalliza-

tions.

It can be seen that, formally, the method of lines is

equivalent to the method of moments with the unknown

currents being expanded in a series of impulse functions,

and with the test functions also being a number of impulse

functions. The distinctive feature of the method of lines is

the means by which the Green’s function is derived. The

following observations may be made in comparison:

i) Since the ,method. of lines is inherently a point-

matching technique, the singtrlarities at the edges of

the strips cannot be exactly taken into account. At

best the test points can be concentrated into the

region: near the edges. In [11] the error caused by

the presence of the singularity is compensated ap-

proximately by a judicious choice of the position of

the test points. With the SDM it is possible to

incorporate the edge singularities directly into the

basis functions.

ii) The method of lines is likely to encounter prob-

lems, especially if higher order modes are required,

due to spttrious modes and relative convergence

phenomena arising from the fact that the currents

and fields arc specified at only a finite number of

points. By making use of basis functions and test

functions which closely resemble the actual current

distributions, the SDM does not suffer from these

undesirable effects.

iii) With the method of lines the field at any point in

the box is only available as a summation in terms

of the currents at the test points. With the SDM it

is possible to extract a closed-form approximation

because of the ability to expand the current func-

tions in a very short series of basis functions.
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Fig. 3. Intensity of~,, forthegeometry of Fig. lwithd2 =0.

VII. THEORETICAL RESULTS

The method here described has been used to calculate

the field patterns for the electro-optic modulator shown in

Fig. 1 both with and without the thin buffer layer of silica.

In Figs. 2 and 3 are plotted the calculated results com-

pared with those calculated in [5] by the method of lines.

In order to directly compare the results, the voltages on the

strips have been set to O and 1 V, respectively, and the

calculations were carried out at a frequency of 1 GHz,

where the results would be expected to be very similar to

those from a static formulation. Note that the choice of

applied voltages causes an asymmetry in the field pattern.

It can be seen that the results are very similar, thus

indicating that each method is capable of giving accurate

results. The advantage of the method described in this

paper is in the computational efficiency and in the avail-

ability of a closed-form approximation for the field ampli-

tude.

Using this method it is possible to calculate the results

given in the figures using an Amstrad 1512 with coproces-

sor and computer times as follows: The values of effective

permit~ivity for a given geometry and frequency were

calculated in 5.5 min for each mode. Thereafter the field

values at any specified point can be calculated in 0.4 s.

VIII. CONCLUSION

In this paper, it has been shown that with some modifi-

cations, the spectral-domain method can be used to ana-

lyze planar waveguide structures with a very thin buffer

layer such as those being considered for use in electro-optic

modulators. These have previously only been analyzed
using static approximations or by means of the method of

lines. The method described in this contribution is rigorous

and computationally efficient and takes into account the

hybrid nature of the microwave field. In addition it is

capable of producing a closed~form first-order solution to

the field patterns of interest which is in a useful form for

the solution of the modulator overlap integral. The. results

calculated using the closed-form formula derived using this

method have been shown’ to be in good agreement with

those calculated using the numerical method of lines.
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